Application of neural networks to an emerging financial market: forecasting and trading the Taiwan Stock Index
نویسندگان
چکیده
In the last decade, neural networks have drawn noticeable attention from many computer and operations researchers. While some previous studies have found encouraging results with using this artificial intelligence technique to predict the movements of established financial markets, it is interesting to verify the persistence of this performance in the emerging markets. These rapid growing financial markets are usually characterized by high volatility, relatively smaller capitalization, and less price efficiency, features which may hinder the effectiveness of those forecasting models developed for established markets. In this study, we attempt to model and predict the direction of return on the Taiwan Stock Exchange Index, one of the fastest growing financial exchanges in developing Asian countries. Our approach is based on the notion that trading strategies guided by forecasts of the direction of price movement may be more effective and lead to higher profits. The Probabilistic Neural Network (PNN) is used to forecast the direction of index return after it is trained by historical data. The forecasts are applied to various index trading strategies, of which the performances are compared with those generated by the buy and hold strategy, and the investment strategies guided by the forecasts estimated by the random walk model and the parametric Generalized Methods of Moments (GMM) with Kalman filter. Empirical results show that the PNN-based investment strategies obtain higher returns than other investment strategies examined in this study. The influences of the length of investment horizon and the commission rate are also considered.
منابع مشابه
Stock Market Modeling Using Artificial Neural Network and Comparison with Classical Linear Models
Stock market plays an important role in the world economy. Stock market customers are interested in predicting the stock market general index price, since their income depends on this financial factor; Therefore, a reliable forecast in stock market can be extremely profitable for stockholders. Stock market prediction for financial markets has been one of the main challenges in forecasting finan...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks: An integrated system based on Fuzzy Genetic algorithm (Case study of price index of Tehran Stock Exchange)
The jamor purpose of the present research is to predict the total stock market index of Tehran Stock Exchange, using a combined method of Wavelet transforms, Fuzzy genetics, and neural network in order to predict the active participations of finance market as well as macro decision makers.To do so, first the prediction was made by neural network, then a series of price index was decomposed by w...
متن کاملForecasting Stock Market Using Wavelet Transforms and Neural Networks and ARIMA (Case study of price index of Tehran Stock Exchange)
The goal of this research is to predict total stock market index of Tehran Stock Exchange, using the compound method of ARIMA and neural network in order for the active participations of finance market as well as macro decision makers to be able to predict trend of the market. First, the series of price index was decomposed by wavelet transform, then the smooth's series predicted by using...
متن کاملForecasting S&P 500 index using artificial neural networks and design of experiments
The main objective of this research is to forecast the daily direction of Standard & Poor's 500 (S&P 500) index using an artificial neural network (ANN). In order to select the most influential features (factors) of the proposed ANN that affect the daily direction of S&P 500 (the response), design of experiments are conducted to determine the statistically significant factors among 27 potential...
متن کاملInvestigating the accuracy of different short-term forecasting methods about stock index and the daily number of coronavirus disease (covid-19) cases in Iran
Firstly, on February 20, 2020, the World Health Organization (WHO) to declare coronavirus disease (covid-19) as a global emergency, and then a pandemic on 11th March. Like the political, social, cultural, and economic disorders caused by Corona disease, financial markets fluctuated sharply in line with Coronachr('39')s news. According to the subject importance of the present study, the short-te...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & OR
دوره 30 شماره
صفحات -
تاریخ انتشار 2003